Ferdinand Heimerl

AFRICAN RED SLIP WARE FROM AUGUSTA VINDELICUM/AUGSBURG (RAETIA): RANGE OF FORMS AND CHEMICAL ANALYSES

North African pottery from Augsburg

This paper presents some results of a recent study on African Red Slip Ware (ARS), cooking ware and lamps from *Augusta Vindelicum*/Augsburg¹. In contrast to most Raetian sites, the provincial capital Augsburg offers a significant amount of North African pottery from the late 1st to the first half of the 5th century AD². That data allows for more in-depth analysis of the trade and settlement history of *Augusta Vindelicum*. The assemblage also serves as a meaningful reference for the pottery supply of *Raetia*. This article concentrates on the range and origin of North African pottery from Augsburg as well as on chemical analyses with wavelength-dispersive X-ray fluorescence (WD-XRF). Furthermore, distribution patterns of African Red Slip Ware in *Raetia* will be discussed.

African Red Slip Ware³

In Augsburg ARS fabrics A¹, Central Tunisian C¹, C², C^{3/4} and North Tunisian D¹ and D² are known; however there is no evidence for fabrics A² or A/D (**table 1**)⁴. Dating from the late 1st to early 3rd century AD, Hayes forms 8 A, 14 A and 124 from currently unknown A¹ kiln sites are among the earliest forms⁵. These few examples are most likely due to individual contacts with *Africa Proconsularis* or closer delivery markets, such as *regio X* and *caput Adriae*⁶.

Hayes forms 45 A, 48 A and 50 A in fabrics C¹ and C² show an increased presence (**table 1**) of Central Tunisian ARS (mainly from kiln sites at Sidi Marzouk Tounsi and Henchir el Guellal near Djilma); these discoveries imply that beginning with the second quarter of the 3rd century, goods from Central Tunisian production centres appear at *Augusta Vindelicum* in greater quantity⁷.

HEIMERL 2014; for former studies on ARS from Augsburg see Bakker 1985; Mackensen 2007; id. 2013, 356–357. In contrast to the 3^{rd} century evidence, there is a significantly increased volume of ARS in the 4^{th} century. The Late Roman assemblage from Augsburg includes Hayes forms 50 B, 58 A and 72 B in fabric $C^{3/4}$ from Central Tunisia⁸. The quantity of dishes Hayes form 50 B in fabric $C^{3/4}$ suggests that Augsburg was still supplied with Central Tunisian products during the second half of the 4^{th} century⁹.

Beginning in the middle of the 4th century, North Tunisian forms (D¹ and D²) begin to dominate over Central Tunisian products (C³/4) at Augsburg (**table 1**). The amount of North Tunisian Hayes forms 50 B, 58 B, 59 A/B and early examples of Hayes form 61 A indicate intensified trade beginning in ca. 340/350¹0. Hayes forms 50 B no. 61, 52 B, 61 Transitional, 61 B, 67, 67 variants, 67/71, 91 variant and 91 A/B in North Tunisian fabrics D¹ and D² are also present. The majority is made up by dishes Hayes 59 A/B, 61 A, 61 Transitional and particularly Hayes form 61 B. Stamped decoration in style Hayes A (I)–(III) is attested on twenty base sherds (Hayes forms 59, 61 and 67) from D¹ and D² kiln sites¹¹.

The latest dateable ARS finds from the 5th century include Hayes form 50 B no. 61, Hayes form 61/El Mahrine 4.3–4/Bonifay Sig. Type 37 Var. A/B 1–2, Hayes form 61 B/Bonifay Sig. Type 38, Hayes 67, 67/71, 72 B and 91 A/B. Their quantity implies that Augsburg was supplied with North African pottery in the first quarter of the 5th century, possibly into the mid-5th century¹².

The large amount of North African pottery in Augsburg is associated with a broad market and a local demand for high-quality tableware in the provincial capital. Distribution maps of Late Roman African pottery within *Augusta Vindeli*-

HEIMERL 2014, 138–145; North African pottery from 63 excavations from 1928 until 2011 was examined.

For the following range of ARS forms from Augsburg see Heimerl. 2014, 21–47.

⁴ HEIMERL 2014, 21–22; 134–135 tab. 2. – For details on forms and fabrics see Hayes 1972, 287–292; ATLANTE 1981, 19–78; MACKENSEN/SCHNEIDER 2002; MACKENSEN/SCHNEIDER 2006; BONIFAY/CAPELLI/BRUN 2012.

BAKKER 1985, 70; MACKENSEN 2007, 344–347; HEIMERL 2014, 22–25.
For the discussion on the provenance of fabric A see MACKENSEN/ SCHNEIDER 2006, 168–169; BONIFAY/CAPELLI/BRUN 2012, 44–46.

⁶ Mackensen 2007, 350–351; Heimerl 2014, 64–65.

Mackensen 2007, 348–350; Heimerl 2014, 25–28; 69 fig. 8. – For the

start of production at Sidi Marzouk Tounsi and Henchir el Guellal near Djilma see M. Mackensen, Production of 3rd century sigillata A/C (C¹⁻²) or 'el-Aouja' ware and its transition to sigillata C³ with appliqué decoration in Central Tunisia. RCRF Acta 38, 2003, 279–286; M. Mackensen, The study of 3rd century African red slip ware based on the evidence from Tunisia. In: D. Malfitana/J. Poblome/J. Lund (eds.), Old Pottery in a New Century. Innovating Perspectives on Roman Pottery Studies. Atti del convegno internazionale di studi Catania, 22–24 Aprile 2004. Monogr. Istituto Beni Arch. Mon. C.N.R 1 (Catania 2006) 113–114; Mackensen/Schneider 2006, 165–167.

⁸ Heimerl 2014, 29–31.

HAYES 1972, 73; PRÖTTEL 1996, 33; J. W. HAYES, Roman pottery. Fineware imports. The Athenian Agora 32 (Princeton, NJ 2008) 75; HEIMERL 2014, 70

¹⁰ Heimerl 2014, 69–72.

BAKKER 1985, 73 no. 36–38; MACKENSEN 2013, 359 fig. 152,5–6; HEIMERL 2014, 42–44.

¹² Mackensen 2013, 357; Heimerl 2014, 74.

ARS (after Haves 19	72, Mackensen 1993, B	onifay 2004, Ben M	Ioussa 2007)					
Hayes 1972	Mackensen 1993	Bonifay 2004	Ben Moussa 2007	Fabric	Rim sherd	Base sherd	Base sherd?	Body sherd?
8 A		3		A^1		1		
124				A^1	2	1		1
14 A		5		A^1	3			
Not classified				A ¹				2
45 A				C^1, C^2	2	1		4
48 A				C ²	1			
50 A				C ²	5	12	18	13
50 B				C ^{3/4}	15	5	7	33
58 A				C ^{3/4}	2			
72 B				C ^{3/4}	1			
50 B Var.			1.1–3	D ²	3			
50 B no. 61		65	1.1 0	D ²	1			
52 B	17.4	0.5		D^1	1			
58 B	1.1–3				7			
59 A/B	2			D^1, D^2		2		1
61 A	4.1			D ¹	2	-		1
				D ¹				
61 A 61 Trans.	4.2	27 1/ 1/D 1		D ¹	10			
	4.3	37 Var. A/B 1		D^1, D^2	3			
61 Trans.	4.4	37 Var. A/B 2		D^1, D^2	3			
61 Trans.		37 Var. A/B 3		D^2	2			
61 Trans.		37 Var. A/B 4		\mathbf{D}^1	1			
59/61 A				\mathbf{D}^1		9		
61 B		38 Var. B 1		D ²	10			
61 B		38 Var. B 1/2 (?)	6.2	D^2	10			
61 B		38 Var. B 2		D^2	9			
61 B		38		D^2		8		
61 B/67				D^2			6	7
67	9.1	41 Var. B		\mathbf{D}^1	2			
67	9.2	41 Var. C		\mathbf{D}^{1}	1			
67	9.3	41 Var. B		\mathbf{D}^{1}	1			
67	9	41		D^1, D^2		3		6
59/61 A/67				D ¹		10		
67 Var.			16.2	D^2	2			
Not classified			100	D^2	2			
59/61/67 (stamps)				D^1, D^2		20		
67/71	14.4			D^1	2			
67/71/73 (?)	14.4			D ²	2			2
91 A/B	52.1–3				8	2		4
91 Var.	Va.1-V	48		D^1, D^2 D^2	1	-		,
Not classified		10			1		18	51
	Haves 1972 Donifor 200	<u> </u>		D^1, D^2			10	21
Hayes 1972	Hayes 1972, Bonifay 200	Bonifay 2004			Rim sherd	Base sherd	Base sherd?	Body sherd?
23 B		Cul. (A) 1			1	Dase sheru	Dase sherd:	1
181		Cul. (B) 5 (Var. C)			2	1		
181 Var.		Cul. (A) 3 Var. C			1			
182		Cul. (B) 6 Var. B			1			
	1972, Atlante 1981, Bon							
Hayes 1972	Atlante 1981 Atlante I–IV A/VII A1?	Bonifay 2004			1			
I B	Atlante VIII A1	Lampe 45			4			
I B	Atlante VIII A2	Lampe 45			5			
I	Atlante VIII				3			
I					2			
I A?	Atlante VIII B?	Lampe 43			1			
I A	Pierced lamp handle	Lompo 54			2			
II A	Atlante X A	Lampe 54			2			

Table 1. Augsburg. Range and quantity of African Red Slip Ware, cooking ware and lamps (after Heimerl 2014, 134–135 tab. 2).

	Fig	I ah no	SiO.	TiO.	AI.O.	Fo.O.	ONM	MaO	CoD	O.e.N	К.О	p.0.	Λ	ئ	N:	Zn Dh	,	>	7.	(NE)	Ro	(O)	(Ph)		Sum
NAME	å		major ele	ments in g	oer cent by	weight		28	200	27	272		ace elei	ments	in part	s per m	illion (r	ı (ma	╛	- 1		(32)			
Name	ARS																						1	1	
May	A or A																								
Name	Fig. 1,1	V140	70,19	1,102	18,81	5,38		1,09	68'0	0,23	2,20	0,081	$ldsymbol{ld}}}}}}$		L		_	7	431		256	83		0.87	
Name	Fig. 1,2	V139	63,99	1,257	22,97			1,39	1,28	0,25	2,43	0,093	143					2	321		277	88		1.25	
Conclus mean Pijiman	Fig. 1,3	826W	69,05	1,127	19,61	5,61	0,032	1,26	0,85	0,13	2,26	ш			Ш					26	268	134	33	86,0	100,22
WOMES 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm 1 5 cm <th< th=""><th>Henchir el</th><th>Guellal nea</th><th>ır Djilma</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Henchir el	Guellal nea	ır Djilma																						
RS64 71 AB COLUMN CLAS CLAS CLAS COLUMN CLAS CLAS <th< th=""><th>Fig. 1,4</th><th>W983</th><th>64,01</th><th>0,841</th><th>18,36</th><th></th><th>l</th><th>2,68</th><th>2,41</th><th>0,49</th><th>5,68</th><th>0,326</th><th>98</th><th></th><th>L</th><th></th><th></th><th>ᆫ</th><th></th><th></th><th></th><th>93</th><th>15</th><th>1,32</th><th>100,18</th></th<>	Fig. 1,4	W983	64,01	0,841	18,36		l	2,68	2,41	0,49	5,68	0,326	98		L			ᆫ				93	15	1,32	100,18
No.	El Mahrino	١																							
WOMS 7.2.08 17.2 5.18 O.010 1.2.2 0.040 0.013 2.00 0.010 1.0 2.0 0.0	Fig. 1,5	B564	71,64	1,002	17,58		0,015	1,25	0,48	0,23	2,64	0,093	L	L	L	L	╙	ㄴ	╙		316	82		1,35	98,62
Weys 7.2.34 O.976 I.6.50 O.0204 I.3.5 O.020 O.13 O.14 O.12 O.17	Fig. 1,5a	W995	72,08	1,023	17,12		0,018	1,27	0,49	0,13	2,60	0,093								24	385	74	48	1,26	101,89
Woosky T.2.44 OSSS	Fig. 1,6	686M	72,35	0,976	16,50		0,028	1,35	0,50	0,18	2,74	0,127								16	268	98	91	0,85	99,90
Name	Fig. 1,7	W994	72,44	0,982	17,03		0,019	1,32	0,65	0,12	2,51	0,103								17	290	88	19	96,0	100,20
Name	Fig. 1,8	W993	72,37	1,069	17,16			1,23	0,38	0,18	2,65	0,077	91							24	336	80	40	0,87	97,31
Market M	Groupe D ²																								
HANNON NO. NO. NO. NO. NO. NO. NO. NO. NO.	Fig. 1,9	W987	78,04	0,949	13,37			0,99	0,31	0,05	2,15	0,063	71								315	81	15	0,65	98,78
W981 70,31 0.886 14,78 6,31 0.036 2.04 2.07 2.04 8.0 36 10 9 264 9 26 10 9 264 9 26 10 9 264 9 26 10 9 264 9 26 11 4 48 1 1 4 1 4 1 4 1 4 1 1 4 1 4 1 1 4 8 9 3 4 9 2	Oudhna																								
γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	Fig. 1,10	W981	70,31	0,886	14,78		0,036	2,04	2,10	0,47	2,77	0,290	88							23	395	77	25	1,57	92,66
Name	Fig. 1,11	986M	73,42	0,842	14,92			1,28	1,84	0,31	2,18	0,148	87								408	72	17	1,29	100,00
VS28 VS89 VS80	Sidi Khalif	ja ja																							
Name	Fig. 2,1	V528	74,58	0,890	15,50		0,020	1,14	0,62	0,29	1,90	0,078	70							16	263	67	20	0,96	100,17
W982 76,56 0,858 14,22 4,48 0,015 1,16 0,25 0,24 1,28 0,075 81 89 33 69 84 162 20 428 21 306 91 24 24 308 448 0,015 1,02 0,55 0,52 1,18 0,015 1,10 0,52 1,18 0,015 1,10 0,52 1,18 0,015 1,10 0,52 1,18 0,02	Fig. 2,2	V529	75,01	0,921	14,82		0,039	1,18	0,56	0,36	1,93	0,065								20	329	62	8	1,50	102,29
W982 76.56 0.888 14.32 4.48 0.015 1.02 0.55 0.27 1.88 0.078 91 96 24 4.48 1.02 0.55 0.20 1.76 0.130 79 95 22 36 4.48 1.0 1.03 1.0	Fig. 2,3	086M	74,26	0,973	15,62			1,16	0,50	0,40	1,96	0,075	83							21	306	91	24	1,08	99,42
W988 75.17 0.875 14.93 4.89 0.0109 1.07 0.052 1.76 0.130 1.76 0.0130 1.76 0.0130 1.76 0.0130 1.76 0.0130 1.76 0.0130 1.86 0.0130	Fig. 2,4	W982	76,56	0,858	14,32		0,015	1,02	0,55	0,27	1,84	0,078	16							13	237	73	17	0,61	99,24
W990 76,32 0,806 14,02 4,86 0,022 1,07 0,72 0,22 1,86 0,096 66 100 23 52 83 167 74 43 44 56 77 76 78 78 78 78 78 7	Fig. 2,5	886M	75,17	0,875	14,93		0,019	1,07	0,95	0,20	1,76	0,130								15	300	78	18	0,87	100,19
W991 74,33 0,866 15,69 5,10 0,030 1,05 0,023 1,18 0,072 1,81 0,072 86 107 29 65 81 172 20 402 17 266 87 17 17 18 18 18 18 18	Fig. 2,6	066M	76,32	908'0	14,02		0,022	1,07	0,72	0,22	1,86	960,0						\Box		14	269	71	21	96,0	100,001
W985 73,50 0,002 1,15 0,00 0,23 1,84 0,109 99 110 29 117 20 415 16 250 69 18 W984 75,16 0,864 15,21 4,72 0,023 1,09 0,84 0,201 90 98 27 87 83 160 21 44 18 117 20 44 17 74 18 17 22 14 22 14 18 71 23 85 75 144 18 11 60 90 90 93 82 75 144 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 149 18 18 18 <t< th=""><th>Fig. 2,7</th><th>W991</th><th>74,33</th><th>0,866</th><th>15,69</th><th></th><th>0,030</th><th>1,05</th><th>0,82</th><th>0,23</th><th>1,81</th><th>0,072</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>17</th><th>266</th><th>87</th><th>17</th><th>0,94</th><th>100,09</th></t<>	Fig. 2,7	W991	74,33	0,866	15,69		0,030	1,05	0,82	0,23	1,81	0,072								17	266	87	17	0,94	100,09
W984 75,16 0,864 15,21 4,72 0,023 1,09 0,84 0,22 1,79 0,091 90 98 27 57 83 160 21 422 14 22 14 22 14 22 14 18 21 20 99 35 85 75 144 18 31 22 70 14 18 31 22 70 14 18 31 22 70 148 18 31 42 18 31 43 43 43 W992 73,45 0,846 14,51 5,73 0,022 1,47 1,10 0,27 2,08 0,100 74 118 18 <th>Fig. 2,8</th> <th>W985</th> <th>73,50</th> <th>0,902</th> <th>16,21</th> <th>5,13</th> <th>0,025</th> <th>1,15</th> <th>06,0</th> <th>0,23</th> <th>1,84</th> <th>0,109</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>16</th> <th>250</th> <th>69</th> <th>18</th> <th>0,84</th> <th>100,41</th>	Fig. 2,8	W985	73,50	0,902	16,21	5,13	0,025	1,15	06,0	0,23	1,84	0,109								16	250	69	18	0,84	100,41
W998 72,34 0,955 16,52 5,91 0,035 1,23 0,76 0,37 1,91 0,080 79 99 35 85 75 144 18 18 311 22 314 29 44 48 48 48 48 48 48 4	Fig. 2,9	W984	75,16	0,864	15,21	4,72		1,09	0,84	0,22	1,79	0,091	06							14	271	74	16	1,04	100,13
W997 75,36 0,846 14,51 5,23 0,022 1,14 0,64 0,54 1,86 0,067 75 98 32 70 75 148 18 337 17 332 49 43 43 44 43 44 44 44	Fig. 2,10	866M	72,24	0,955	16,52		0,035	1,23	0,76	0,37	1,91	0,080	79							22	314	29	44	2,21	100,84
W992 73,45 0,848 14,91 5,73 0,028 1,47 1,10 0,27 2,08 0,100 74 110 43 81 84 158 29 319 18 439 20 33	Fig. 2,11	W997	75,36	0,846	14,51	5,23	0,022	1,14	0,64	0,34	1,86	0,067	75							17	332	49	43	0,56	98,05
Victor specification	Fig. 2,12	W992	73,45	0,848	14,91	5,73	0,028	1,47	1,10	0,27	2,08	0,100					_			18	439	20	33	1,15	101,75
ithout specification) Visio 65,09 0,925 19,67 8,02 0,060 2,04 1,29 0,84 1,98 0,084 129 156 113 116 137 87 38 176 20 489 90 33 bric A' or A' and Tournsi Visio 65,09 0,925 19,67 1,078 19,05 0,035 1,73 0,73 0,84 0,951 1,98 0,061 0,81 0,73 0,73 0,84 0,961 1,98 0,061 1,73 0,73 0,84 0,961 1,73 0,73 0,84 0,961 1,73 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72	Lamps																								
V530 65.04 0.925 19.67 8.02 0.066 2.04 1.29 0.84 1.98 0.084 129 156 115 116 137 81 176 138 176 20 489 90 33 31 32 489 90 33 32 489 39 39 39 39 39 39 39	Tunisia (w	ithout speci	fication)																						
brice A ¹ or A ² V531 67,07 1,078 19,05 6,58 0,050 1,62 0,81 0,73 2,86 0,150 112 110 35 90 122 206 30 373 21 400 99 20 V531 V531	Fig. 2,13	V530	62,09	0,925	19,67			2,04	1,29	0,84	1,98		129		Ш							06	33	1,01	98,39
VS31 67,07 1,078 19,05 6,58 0,050 1,62 0,81 0,73 2,86 0,150 112 110 35 90 122 206 30 373 21 400 99 20 colspan="8">Awyse 69,17 1,276 18,39 5,19 0,035 1,73 0,72 0,84 2,58 0,061 98 111 43 96 106 223 46 381 29 100 37	Similar fab	ric A1 or A	. 2																						
out Tounsi W996 69,17 1,276 18,39 5,19 0,035 1,73 0,72 0,84 2,58 0,061 98 111 43 96 106 223 46 381 29 593 100 37		V531	67,07	1,078	19,05			1,62	0,81	0,73	2,86									21	400	66	20	1,15	100,21
W996 69,17 1,276 18,39 5,19 0,035 1,73 0,72 0,84 2,58 0,061 98 111 43 96 106 223 46 381 29 593 100 37	Sidi Marzo	ouk Tounsi		ΙI												ΙI	ΙI	ΙI	ΙI		ΙI				
		966M	69,17		18,39			1,73	0,72	0,84	2,58	0,061					- 1		- 1	29		001	37	1,05	99,52

Table 2. Augsburg. Results of chemical analyses (WD-XRF) of African Red Slip Ware and lamps (after Heimer 2014, 133 tab. 1).

cum indicate that there was no reduction in settlement during the 4th and first half of the 5th century¹³.

Cooking ware

North African cooking ware is represented with only a few casseroles, dishes and one lid fragment of Hayes forms 23 B, 181, 181 variant and 182 (**table 1**)¹⁴. Nevertheless, the presence of these vessel forms is highly remarkable since North African cooking ware is scarcely attested in *Raetia*¹⁵. The examples from Augsburg are thought to be associated with a small influx of people into the province with Mediterranean cooking habits¹⁶.

Lamps

Seventeen lamp fragments and three partially to fully-intact North African lamps were found in Augsburg (**table 1**)¹⁷. Finds include lamp types that were hereto unknown in *Raetia* (e.g. type Atlante I–IV/VII A1(?), type Atlante VIII B variant, not classified type with pierced handle)¹⁸. Most frequent are lamps of the types Atlante VIII A1 and A2. These forms can be dated between the middle of the 4th and the first half of the 5th century¹⁹. A lamp of type Atlante X A1a/A2 and a fragment type Atlante X A1 may have been produced in the first half of the 5th century²⁰. In comparison with other Raetian sites, the number of Late Roman lamps is relatively high in Augsburg. This might not only be due to continued excavation but could rather indicate the demand of a wealthy clientele in the provincial capital²¹.

Chemical analyses (WD-XRF)

A selection of ARS and lamp fragments was subjected to chemical analyses²². The samples were chosen e.g. to verify the North African origin of rare forms that were not yet attested in *Raetia*. When macroscopical analyses were uncertain or indicated a not yet attested origin for certain vessel forms,

 13 $\,$ Heimerl. 2014, 74–83 with figs. 12–13 (distribution maps of ARS in Augsburg).

- ¹⁶ Heimerl 2014, 65.
- ¹⁷ Ibid. 51–61.
- ¹⁸ Ibid. 54–59.
- Atlante 1981, 195; Mackensen 1993, 147; Pröttel 1996, 71–76;
 Bonifay 2004, 359–364.
- HAYES 1972, 314; ATLANTE 1981, 200; MACKENSEN 1993, 151–152; BONIFAY 2004, 373–382; MACKENSEN 2013, 356.
- ²¹ Heimerl 2014, 72.
- For further details on chemical analyses see ibid. 17–19; 133 tab. 1.

fabrics should be defined chemically. The origin of significant stamp types was also of interest. Furthermore, variants of dishes Hayes form 61 B were analysed in terms of their morphological development within North African potteries. Analyses were executed via wavelength-dispersive X-ray fluorescence (WD-XRF) by G. Schneider and M. Daszkiewicz²³. It was possible to relate the samples from Augsburg to reference groups of specific pottery manufacturing centres that were established by M. Mackensen and G. Schneider²⁴. The results are presented in **table 2**, with major elements normalized to a constant 100% and trace elements given in parts per million (ppm)²⁵.

Two Hayes form 124 inkwells of late 1st and 2nd century date (**fig. 1,1–2**) were already chemically classified as fabric A and published by M. Mackensen²⁶. A fragment of Hayes form 14 A (**fig. 1,3**) of the late 2nd/early 3rd century²⁷ was also assigned to (as of yet unknown) fabric A kiln sites.

A rim sherd from a Hayes form 58 A dish (**fig. 1,4**), dating from ca. 290/300 to ca. 375²⁸, was attributable to Henchir el Guellal near Djilma.

Former analysis classified the only appliqué-decorated fragment Hayes form 52 B no. 22/El Mahrine 17.4 (**fig. 1,5**) as fabric D¹ from El Mahrine, dating to the late 4th/early 5th century 29. A base sherd (**fig. 1,5a**) from the same excavation in Augsburg is highly similar in its chemical composition 30; these two fragments are most probably part of the same bowl. A flat-based dish Hayes form 61 Transitional/Bonifay Sig. Type 37 Var. A/B4 (**fig. 1,6**) from El Mahrine is dateable to the first third of the 5th century 31. Two fragments of flanged bowls (**fig. 1,7–8**) were also found to originate from El Mahrine, where production of Hayes forms 91 A/B/El Mahrine 52.1–3 started in ca. 400(/420)³².

A sample of Hayes form 61 Transitional/Bonifay Sig. Type 37 Var. A/B2 (**fig. 1,9**), dating to the first half of the 5th century³³, corresponds to the fabric of the D² group. Unfortunately, this was not assignable to a specific pottery-manufacturing centre.

HEIMERL 2014, 47–51. – For further details on forms and fabrics see BONIFAY 2004, 211–231; IKÄHEIMO 2003, 17–71.

¹⁵ Apart from Augsburg only one fragment of North African cooking ware (bodysherd, Hayes form 181) is documented at the Lorenzberg near Epfach (М. Маскемен, Spätrömische nordafrikanische Keramik vom Lorenzberg bei Epfach – eine Neubewertung der Funde aus den Ausgrabungen 1953–1957. Bayer. Vorgeschbl. 80, 2015, 185 cat. no. 23). – On the distribution of North African cooking ware at inland sites in the Mediterranean see Іканеімо 2003, 119–121; V. Leitch, Reconstructing history through pottery: the contribution of Roman N African cookwares. Journal Roman Arch. 26, 2013, 286–295.

²³ Ibid. 133 tab. 1; the author is very grateful to G. Schneider (Arbeitsgruppe Archäometrie, TOPOI, Free University Berlin) and M. Daszkiewicz (Archea, Warsaw) for the provision and interpretation of the results of the WD-XRF analyses; the analyses were funded by Augsburg City Archaeology and Pro Augusta: Für Archäologie in Augsburg e.V.

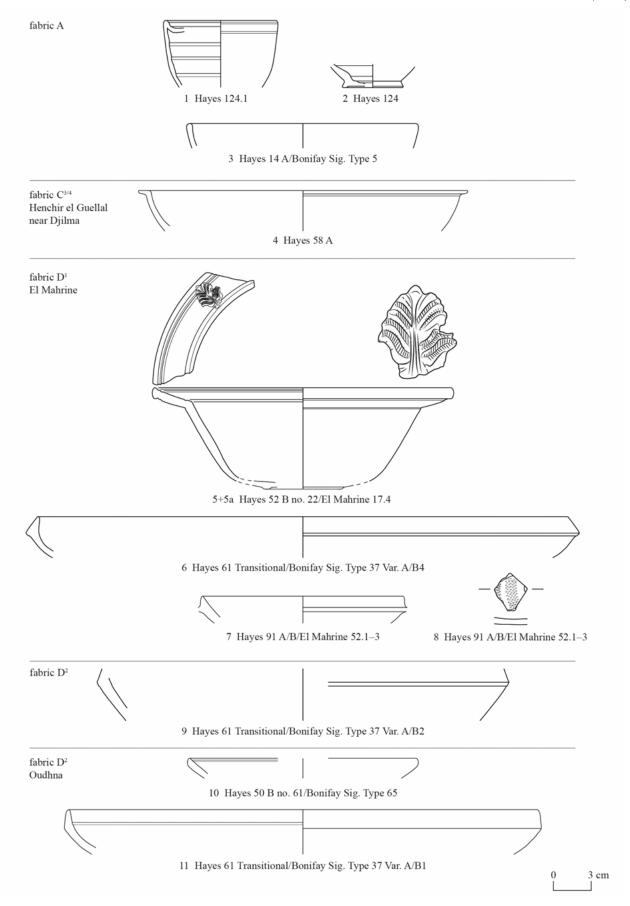
For reference groups via WD-XRF see Mackensen/Schneider 2002; Mackensen/Schneider 2006; for further X-ray fluorescence analyses see Brun 2004; id. 2007.

Ignition losses (1.o.i.) are indicated so that analyses could be recalculated to dry conditions.

²⁶ Mackensen 2007, 345–347 fig. 1,2–3; 347 tab. 1 (V139; V140).

HAYES 1972, 41; J. W. HAYES, A Supplement to Late Roman Pottery (London 1980) 514–515; PRÖTTEL 1996, 27; BONIEAY 2004, 159. – For a longer floruit see J. C. QUARESMA, Chronologie finale de la sigillée africaine A à partir des contextes de Chãos Salgados (Mirobriga?): différences de facies entre Orient et Occident. In: M. Á. Cau/P. Reynolds/M. Bonifay (eds.), LRFW 1. Late Roman fine wares. Solving problems of typology and chronology. A review of the evidence, debate and new contexts (Oxford 2011) 77–83.

²⁸ Hayes 1972, 95–96; Pröttel 1996, 34.


MACKENSEN 2013, 356; 354 fig. 149,10; 359 fig. 152,3; 350 tab. 10, no. 20 (B564).

Data compared by G. Schneider.

Bonifay 2004, 167–168 fig. 90; 171. – For similar forms from El Mahrine see Mackensen 1993 pl. 53.7–9; Ben Moussa 2007, 84 fig.

Mackensen 1993, 430–431; Pröttel 1996, 50.

³ Bonifay 2004, 167; 171.

Fig. 1. Augsburg. Chemically analysed (WD-XRF) fragments of African Red Slip Ware. – Scale 1:3. Appliqué decoration no. 5 Scale 1:1.

M. Bonifay located the production of Hayes form 50 B no. 61 in Sidi Zahruni and dated this form (Bonifay Sig. Type 65) to the first half of the 5th century AD³⁴. According to chemical analysis of a rim sherd from Augsburg (**fig. 1,10**), Hayes form 50 B no. 61 was not only produced in Sidi Zahruni, but also in Oudhna. Furthermore, Hayes form 61 Transitional/Bonifay Sig. Type 37 Var. A/B1 (**fig. 1,11**) in fabric D² was made in the surroundings of Oudhna in the first half of the 5th century³⁵.

The standard dish Hayes form 50 B was produced on a large scale in Central Tunisian workshops, while *Pheradi Maius*/Sidi Khalifa was proven to be a North Tunisian production centre for these dishes³⁶. Three analysed vessels of Hayes form 50 B from Augsburg (**fig. 2,1–3**) correspond to the Sidi Khalifa reference group and were probably produced in the second half of the 4th and early 5th century³⁷. A flat-based dish (**fig. 2,4**) of Hayes form 58 B (similar Hayes form 32/58) can now be attributed to the range of dish forms from *Pheradi Maius* for the first time. Hayes form 58 B was produced from the late 3rd/early 4th century to the mid or the third quarter of the 4th century³⁸.

The samples from Augsburg include Hayes form 61 Transitional/Bonifay Sig. Type 37 Var. A/B3 (**fig. 2,5**), Hayes form 61 B/Bonifay Sig. Type 38 Var. B1/B2³⁹ (**fig. 2,6**) and Hayes form 61 B/Bonifay Sig. Type 38 Var. B2⁴⁰ (**fig. 2,7**). These different variants of Hayes form 61 of the first half of the 5th century were also produced in Sidi Khalifa⁴¹. Analyses proved the same origin for Hayes form 67 variant (**fig. 2,8**), dating from the mid-4th to the mid-5th century⁴². A similar, but not definitely identifiable rim sherd (**fig. 2,9**) was also attributed to *Pheradi Maius*. Stamped decoration of concentric circles within a square grille-pattern⁴³ (**fig. 2,10**) and another stamp of specific leaf-sprays⁴⁴ (**fig. 2,11**) were previously considered to be characteristic of the pottery centre of Sidi Khalifa. The provenance from Sidi Khalifa is confirmed for both analysed samples from Augsburg.

The flanged bowl Hayes form 91/Atlante 1981 pl. 48.11/Bonifay Sig. Type 48 (**fig. 2,12**) is probably a precursor of Hayes form 91 A/B and dateable to the second half of the 4th century⁴⁵. Chemical analyses on such bowls from Oudhna seem to imply local production⁴⁶. According to the sample

Jibid. 57; 197; T. Ghalla/M. Bonifay/C. Capelli, L'atelier de Sidi-Zahruni: Mise en évidence d'une production d'amphores de l'Antiquité tardive sur le territoire de la cité de Neapolis (Nabeul, Tunisie). In: J. M. Gurt I Esparraguera/J. Buxeda I Garrigós/M. A. Cau Ontiveros (eds.), LRCW 1. Late Roman coarse wares, cooking wares and amphorae in the Mediterranean. Archaeology and archaeometry. BAR Internat. Ser. 1340 (Oxford 2005) 496; 504 fig. 5,29–30.

BONIFAY 2004, 167: 171.

from Augsburg (fig. 2,12) Sidi Khalifa was most likely another production site for this form.

It is remarkable that a significant proportion of the chemically analysed assemblage at Augsburg originated from *Pheradi Maius*/Sidi Khalifa. Whether this high percentage is representative for the whole supply of Augsburg and the provinces of *Raetia prima et secunda* can only be attested by larger series of WD-XRF analyses.

Chemical analyses were also conducted on lamp types that are scarcely attested in Augsburg and *Raetia*. Because of its fragmentary condition a small shoulder fragment of type Atlante I–IV or VII A1(?) could not be classified with certainty (**fig. 2,13**). Nevertheless, this is the first example of North African mid Roman lamps in *Raetia*⁴⁷. The sample was isolated geographically to Tunisia by chemical analysis, but could not be assigned to a certain pottery manufacturing centre.

A fragment with floral relief decoration on the shoulder and a central rosette on the discus (**fig. 2,14**) may be evidence for a variant of type Atlante VIII B. These lamps date to the second half of the 4th century⁴⁸. WD-XRF analysis displays that the lamp belongs to the chemical reference group associated with ARS fabric A.

The type of pierced lamp handle (**fig. 2,15**) cannot be specified, but chemical analysis makes an attribution to Sidi Marzouk Tounsi probable.

Using WD-XRF, even small fragments were able to be identified as North African products. This increases the general understanding of the supply of *Augusta Vindelicum* with respect to North African pottery. Furthermore, it was possible to add forms of currently unknown origin to the range of products from specific potteries by chemical analyses.

Distribution of African Red Slip Ware in Raetia

Distribution maps based on recent work of S. Gairhos, A. Höck and M. Mackensen illustrate the supply of *Raetia prima et secunda* with North African pottery⁴⁹. Apart from Augsburg only a few findspots of ARS (Chur, Bürgle near Gundremmingen, Innsbruck-Wilten, Kempten, Pfaffenhofen, Regensburg) are known from the late 1st to the early 4th century⁵⁰. From about the mid-4th century to the first half of the 5th century larger quantities of ARS are attested in various urban centres, hill-top settlements and smaller settlements in both Raetian provinces (**fig. 3**)⁵¹. Trade routes for African pottery appear to follow north-south axes over the Alps from northern Italy⁵². The quantity and variety of North African

ATLANTE 1981, 65; PRÖTTEL 1996, 32; MACKENSEN/SCHNEIDER 2006, 183; BEN MOUSSA 2007, 133 fig. 45 form Pheradi Maius 1.1–3; BRUN 2007, 570; 575 fig. 2,7; 577 fig. 5 (ACD 457; ACD 96).

³⁷ Ben Moussa 2007, 133–134.

³⁸ Hayes 1972, 95–96; Pröttel 1996, 42–43; Mackensen 1993, 398.

³⁹ Similar Ben Moussa 2007, form Pheradi Maius 6.2.

⁴⁰ Similar ibid. fig. 46.5 and 46.7.

For forms and dating see Bonifay 2004, 167–171.

⁴² Similar Ben Moussa 2007, 141 form Pheradi Maius 16.2.

⁴³ Atlante 1981, 126 pl. 56,60; Mackensen 1993, 31 fig. 5,12; 446.

⁴⁴ HAYES 1972, stamp type 77B: chevrons formed of two converging leaf-sprays with sprays pointing downwards; MACKENSEN 1993, 446–448.

⁴⁵ Mackensen 1993, 431; Bonifay 2004, 179.

⁴⁶ Brun 2004, 242 (ACD 124, reference group Oudhna B).

⁴⁷ Heimerl 2014, 54–55; 72.

For detailed discussion of the decoration see Heimerl 2014, 57–58; for dating see Bonifay 2004, 358.

S. GAIRHOS, Archäologische Untersuchungen zur spätrömischen Zeit in Curia/Chur GR. Jahrb. SGUF 83, 2000, 117; A. Höck, Archäologische Forschungen in Teriola 1. Die Rettungsgrabungen auf dem Martinsbühel bei Zirl von 1993–1997. Spätrömische Befunde und Funde zum Kastell. Fundber. Österreich Materialh. A 14 (Horn 2003) 56–61; MACKENSEN 2007, 350–351; ID. 2013, 352–358; HEIMERL 2014, 83–91 with figs. 14–17.

⁵⁰ Heimerl 2014, 84–85, fig. 15.

Ibid. 85–89 fig. 16; for the list of sites see ibid. 139–145 (list 3 and 5).

For a detailed discussion on distribution of ARS in *Raetia* see ibid. 83–91.

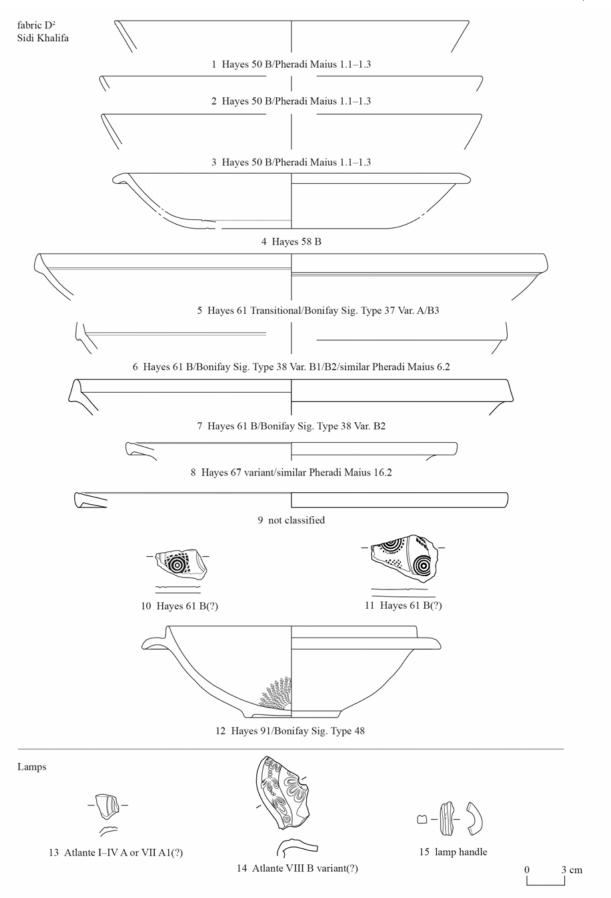


Fig. 2. Augsburg. Chemically analysed (WD-XRF) fragments of African Red Slip Ware and lamps. – Scale 1:3.

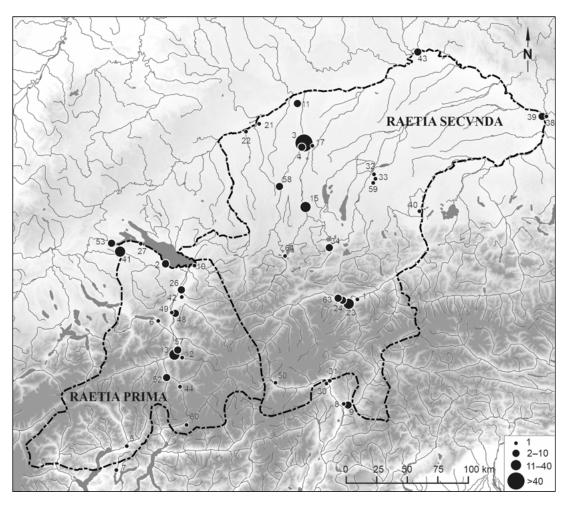


Fig. 3. African Red Slip Ware in *Raetia prima et secunda* and from external sites near the provincial border (4th and first half of 5th century AD; after Heimerl 2014, 87 fig. 16). 1 Ampass, Widenfeld; 2 Arbon; 3 Augsburg; 4 Augsburg-Göggingen; 5 Bellinzona, Castelgrande; 6 Georgenberg near Berschis; 7 Bioggio; 8 Bozen-Gries; 9 Bozen, Kapuzinerkloster; 10 Bregenz; 11 Burghöfe near Mertingen; 12 Carschlingg near Castiel; 13 Chur; 15 Lorenzberg near Epfach; 17 Friedberg, Am Fladerlach; 21 Bürgle near Gundremmingen; 22 Günzburg; 23 Innsbruck-Wilten; 24 Kematen, Michelfeld; 26 Koblach; 27 Konstanz; 30 Marling near Meran; 31 Zenoburg near Meran; 32 München-Denning; 33 München-Perlach; 34 Moosberg near Murnau; 38 Passau-Innstadt; 39 Passau, Kloster Niedernburg; 40 Pfaffenhofen; 41 Pfyn; 42 Rankweil-Brederis; 43 Regensburg; 44 Riom-Parsonz; 48 Schaan, Kastell; 49 Krüppel ob Schaan; 50 Ganglegg near Schluderns; 52 Burg Hohenraetien near Sils im Domleschg; 53 Stein am Rhein, Kastell Burg; 57 Trimmis; 58 Goldberg near Türkheim; 59 Unterhaching; 60 Crep da Caslac near Vicosoprano (Bregaglia); 63 Martinsbühel near Zirl; 64 Füssen, Schlossberg.

Red Slip Ware, cooking ware and lamps in Augsburg stand out in particular within the overall ceramic assemblage of *Raetia*. At forts and settlements on the upper Danube and in the northeastern part of *Raetia secunda*, ARS is completely absent or found only in minor quantities. Finds of ARS in *Raetia* dating from the middle of the 5th century onwards are slight. The latest dateable isolated finds (from ca. 450/480 onwards) were discovered in Regensburg, Passau-Niedernburg, the North Tyrolean Inn Valley and the Alpine Rhine Valley⁵³. Notably, none come from Augsburg.

Conclusion

In contrast to most Raetian sites, Augusta Vindelicum/Augsburg offers a significant amount of North African pottery. The quantity and variety of finds may be associated with a local demand for high-quality tableware and lamps in the provincial capital. Chemical analyses (WD-XRF) allow for differentiated conclusions concerning the supply of Augsburg with North and Central Tunisian products. WD-XRF samples from Augsburg also contribute to our understanding of the range of forms that were produced in specific pottery-making centres in Tunisia. North African pottery from Augsburg is a crucial archaeological source for trade and the settlement history of Augusta Vindelicum and serves as a meaningful reference for cross-regional comparative studies.

⁵³ Ibid. 89–91 fig. 17.

Bibliography

BONIFAY/CAPELLI/BRUN 2012

ATLANTE 1981 A. CARANDINI (a cura di), Atlante delle Forme Ceramiche I. Ceramica Fine Romana nel Bacino Med-

iterraneo (Medio e Tardo Impero). EAA (Roma 1981).

BAKKER 1985 L. BAKKER, Ausgewählte Gefäßkeramik der frühen und späten Kaiserzeit aus Augusta Vindelicum-Augs-

burg. In: J. Bellot/W. Czysz/G. Krahe (eds.), Forschungen zur provinzialrömischen Archäologie in

Bayerisch-Schwaben. Schwäb. Geschichtsquellen u. Forsch. 14 (Augsburg 1985) 45–77.

Ben Moussa 2007 M. Ben Moussa, La production de sigillées africaines. Recherches d'histoire et d'archéologie en

Tunisie septentrionale et centrale. Collecció Instrumenta 23 (Barcelona 2007).

BONIFAY 2004 M. BONIFAY, Études sur la céramique romaine tardive d'Afrique. BAR Internat. Ser. 1301 (Oxford 2004).

ID./C. CAPELLI/C. Brun, Pour une approche intégrée archéologique, pétrographique et géochimique des sigillées africaines. In: M. Cavalieri/É. De Waele/L. Meulemans (eds.), Industria Apium. L'archéologie: une démarche singulière, des pratiques multiples. Hommages à Raymond Brulet (Louvain 2012) 41–62.

Brun 2004 C. Brun, Détermination d'origine par fluorescence X de quelques exemplaires de l'ensemble de

céramiques du IVe s. p.C. découverts dans une citerne du capitole d'Uthina (Tunisie). In: H. Ben Hassen/L. Maurin (eds.), Oudhna (Uthina), colonie de vétérans de la XIIIe légion. Histoire, urbanisme, fouilles et mise en valeur des monuments. Ausonius-Publ. Mém. 13 (Bordeaux, Paris, Tunis 2004)

236-244.

Brun 2007 Id., Étude technique des productions de l'atelier de Sidi Khalifa (Pheradi Maius, Tunisie): céramiques

culinaires, sigillées et cazettes. In: M. Bonifay/J.-Ch. Tréglia (eds.), LRCW 2. Late Roman Coarse Wares, Cooking Wares and Amphorae in the Mediterranean. Archaeology and Archaeometry. BAR

Internat. Ser. 1662 (II) (Oxford 2007) 569–579.

HAYES 1972 J. W. HAYES, Late Roman Pottery (London 1972).

HEIMERL 2014 F. HEIMERL, Nordafrikanische Sigillata, Küchenkeramik und Lampen aus Augusta Vindelicum/Augsburg.

Münchner Beitr. Provinzialröm. Arch. 6 (Wiesbaden 2014).

Iкäнеімо 2003 J. P. Ікäнеімо, Late Roman African Cookware of the Palatine East Excavations, Rome. A holistic

approach. BAR Internat. Ser. 1143 (Oxford 2003).

MACKENSEN 1993 M. MACKENSEN, Die spätantiken Sigillata- und Lampentöpfereien von El Mahrine (Nordtunesien).

Studien zur nordafrikanischen Feinkeramik des 4. bis 7. Jahrhunderts. Münchner Beitr. Vor- u. Früh-

gesch. 50 (München 1993).

MACKENSEN 2007 ID., Nordafrikanische Sigillata der mittleren Kaiserzeit aus Augsburg. Bayer. Vorgeschbl. 72, 2007,

341–353.

MACKENSEN 2013 ID., Terra Sigillata aus Nord- und Zentraltunesien. In: M. Mackensen/F. Schimmer (eds.), Der römis-

che Militärplatz Submuntorium/Burghöfe an der oberen Donau. Archäologische Untersuchungen im spätrömischen Kastell und Vicus 2001–2007. Münchner Beitr. Provinzialröm. Arch. 4 (Wiesbaden

2013) 347-360.

Mackensen/Schneider 2002 M. Mackensen/G. Schneider, Production centres of African red slip ware (3rd-7th c.) in northern and

central Tunisia: archaeological provenance and reference groups based on chemical analysis. Journal

Roman Arch. 15, 2002, 121–158.

MACKENSEN/SCHNEIDER 2006 M. MACKENSEN/G. SCHNEIDER, Production centres of African Red Slip ware (2nd-3rd c.) in northern and

central Tunisia: archaeological provenance and reference groups based on chemical analysis. Journal

Roman Arch. 19, 2006, 163-190.

PRÖTTEL 1996 Ph. M. PRÖTTEL, Mediterrane Feinkeramikimporte des 2. bis 7. Jahrhunderts n. Chr. im oberen Adri-

araum und in Slowenien. Kölner Stud. Arch. Röm. Provinzen 2 (Espelkamp 1996).